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ABSTRACT

Let f € L1 (O ,~~) ,  6 > 0 and (G
6
f )  (t) = 6 1 f e

(t_5 6
f(s ds. Given

a partition P = {O = t
0 

< t
1 

< < t. < t~÷1 < •. . } of [0 ,w) where

t. -* ~~~, we approximate f by the step function A~ f defined by

A~ f ( t) = (G
6
G
6 

• • .  G
6 

f ) (O) for t~~ 1 
< t < t .

1. 1— 1 1

where iS . = t. - t. . The main results concern several properties of this

process, with the most important one being that A~ f ~ f in L1 (O ,) as

u (P) = sup 6. -
~~ 0. An application to difference approximations of evolution

problems is sketched .
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SIGNIFICANCE AND EXPLA NATION

• A method of approximating functions which are integrable on

~~~~ by piecewise constant functions is presented and stud 4ed

in this paper. The method used and the properties established

for it allow one to reduce the study of the convergence of a

difference method of theoretical interest for nonlinear time-

dependent problems with forcing terms to the simpler study of

related problems without forcing terms.

‘
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The responsibility for the wording and views expressed in this descr ip—
tive summary lies with MRC , and not with the authors of this report.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~ TL~ -H .T - 

“‘ , 11. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~ •



- ‘~~~~~~~~ 

~~~~~

• AN APPROXIMATION OF INTEGRAPLE FUNCTIONS FiY STEP

FUNCTIONS WITH AN APPLICATION

M. G. Crandall~~ and A. Pazy~~~
’2

~

This note is concerned with an interesting method of appr ~1mati ng an integrable

function f : (O,°~) 
-
~ ~ by step functions. The approxim ation process involves the

integral transformation G6 : L
1(O,°°) -

~ L
1(O,°’) defined for ~ > 0 by

• (1) (G~f)(t) = 
~ 

f e(t5~~~f(s)ds .

Equivalently, g G~f is the unique function g € L1(O,°’) whicn satisfies g — 
~g = f.

Let

p = { o = t  < t  < ...<t • < t • < . . .)
0 1 i 1+1

be a partition of [O,°~) with u r n  t. = . The step sizes of the partition are denoted

by d. ;  
~~

. t. — t~~1
. Each partition P determines a piecewise constant approxima-

tion A~f of f defined by

(2) A f(t) = (G G ... G f)(O) for t. < t < t . ,  i = 1,2 p 
~~ •~~~~~~• i—i —  1
l i—I 1

The mesh of the partition is denoted by p (P); p(P) sup ~~ . . The main results are

sunm~arized in the following theorem.

Theorem: Let P be as above, f € L~ (O ,’”) and A~ be defined by (2). Then

(3) A~ f C L1(O,°’) ,

(4 ) 5 IA~ f ( s )  Ids < f If (s ) Ids
0 0

(5) 5 A~ f(s)ds = 5 f(s)ds

and

(6) lim 5 IA~
f(S) — f ( s ) I d s  = 0

- p(P)-*O 0
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• The definition of the transformation f + A~f as well as the questions resolved

by the theorem arose naturally from considering difference approximations of certain

nonlinear evolution problems . While this motivation is not relevant for the statement

or the proof (given in Section 1) of the theorem, we do explain it briefly in Section 2.

We are indebted to Carl de Boor for his advice on this problem .

Section 1. (Proof of the Theorem).

Let h,k C L’(—’°,O) and f € L1(O,co) . We define k 0 f ~ L
1(O ,°’) and

h * k € L1(—° ,O) according to

(1.1) (k f)(t) = 5 k(t — s)f(s)ds
t

and

0
(1.2) h * k ( r )  = f h(r — s)k(s)ds

The convolution operator “
*

“ is commutative and associative, while

(1.3) h 0 (k 0 f) = (h * k) 0 f - 
‘
I

For 5 > 0 we set

(1.4) k
5
(r) = S 1exp(r / S)  -

The transformation G
5 

in (1) is

(1.5) G
5
f = k

5 f -

Let p = {O = t < t < - . -  < t. < t. < - -- } and 5 . = t. - t. be as in the introduc—
0 1 1 i—i i i i—l

tion and A~ be given by (2). For simplicity of notation we will set

(1.6) k . = k and K . = k . * K .  = k. * k. * - . .  * k for i = 1,2 
• 1 5 . 1 1 i—l 1 1—1 1

1

Since k . > 0, A~ clearly satisfies

( 1 . 7 )  k~f I < A ~ If l j
Moreover by ( 2 ) , ( 1 . 5 ) ,  ( 1 . 6 )  and ( 1 . 3 )

t . •
1 1

I A~ f l (s)ds  = 

~~~ 

5~~(k ~ (k
11 

o ( .  - . o (k 0 (k
1 I f  I ) ) .  . . ) ) )  (0)

( 1 . 8 )  
1 =

= 
1=1 ~~~ 

a I f I ) ( O )  = 

~~ 
5~~ 1 s ) I f ( s ) Ids  .

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ i~ii± ~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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Since each of the summand s 6
tK&~~

5) in the last integrand is nonnegative , we can

establish (3) and (4) of the theorem by showing that

(L9) 
2~ l 

5
~

K
&

(r) < 1 for -= < r ~ 0

while (5) requires
• I

(1.10) 
~ 

6~X~ (r) 1 a.e. on — < r < 0 -

The following lemma implies (1.9) since K . * 1 > 0.

Lemma 1: For each j  1, 2 , . . .

( 1.11) 
£=l ~~~~ 

+ K. * 1 5 1

Proof of Lemma 1: We proceed by induction. If j  = 1 the claim is that 6
1
k
1 

+ * 1 5 1.

Indeed, for any 6,

(1.12) 6k
6 

+ k
6 * 1 e

r/S 
+ ~ 

0 
e~ ~~

“6d~ 5 1 -

• 
. 

We now assume the claim is true for j  = i and verify it for j  = i + i. By (1.12) we

have

1+1
(1.13) K i~ 1*1 

= K . 
1

*K . *1 = k .~~~1
*1*K . = ( 1 — 6~~~~1

k
1~~ 1

) *K ~ = K . *l — S
~ +i

K
~+i 

= 1 — 

~~~~~

where the last equality follows from the induction hypothesis . Rearrang ing ( 1.13)

yields (1.11) with j  = i + 1 and the proof is complete.

We ver i fy  (1.10) indirectly . Let

(1.14) f (t)  = e
_ Ot 

-

If 0 > 0

(1.15) (G
5f )  (t) = 

~ 
f e

(t_
~~~~ e 05ds = 

1 + aS e
_ Ot

t

from which it follows that

(1.16) (A~f) (t) = (1 + 5)~ 1 for t .1  < t < t .

-3-
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and hence

(1.17) 5 (A~,f )  (s)ds = 
i~l 

6~ Ff (1 + a6~)
l

Setting r. = (1 + ac5 .) 1 we claim that

(1.18) 6 r + 6 r r + ... + 6 r r . -.. r r + r~~r.r , - - - r r =
1 1  2 2 1  1 1 1 — 1  2 1  i i—l 2 1

for I = 1,2 The proof parallels the proof of Lemma 1. Since ~ 6 . = =,

i=l
we have r~r1_1 - - . r

1 
-
~ 0 as i -‘ and (1.17), (1.18) together imply

/ (A~f0) 
(s)ds = ~~

- = J fa ds -

Setting f = f in (1.8), letting i -
~ and using the above implies (1.10).

It remains to verify (6) - (We remark that the previous results did not require

< =). In view of (4), which is independent of P, it suffices to verify (6)

for a dense subset F of L1(0,0’). It is convenient to choose F = span{f : ~ > o}.

(In fact, span{e flt : n = 1,2,...) is dense in L1(O ,°’), as is well known. To see

this, use the change of variables x = e t 
which exchanges (0,”) and (0,1) while

e nt becomes xc.) To proceed, we estimate IA~f — f~~~ in terms of p(P). For

convenience of future referencing the simple lemma which does so is stated without using

the notation above.

Lemma 2: Let be a sequence of positive numbers satisfying ~ 6. = and
1=1

a > 0. Let t = 0, t. = S + 6 + - - -  + 6. for i = 1,2,... and p = sup 5. . If0 1 1 2 1 1

g(t) = ~T (1 + O6
f
)~~ for t .1  < t < t •

1=1 1 1

then

I g(t) — e_Ot
I e~~tmax {eP0t e0 U  

— 1, 1 — e °~} -

Proof of Lemma 2: It is enough to treat a = 1, for then the general result follows

upon replacing by (aS.) and t by at. Elementary calculus yields

( 1 . 1 9 )  e 6 
< (1  + 6)~~’ < ~~~~~ for S > 0 -

-

~~~~~~~~~ -4-



Multiplying these inequalities yields

• -( 5  + - . . +6 • )  1 - ( 5  +. ..+5 ) (52~• ÷ 5 2)
(1.20) e 1 1 < fJ (1 + 5 ) 1 

< e 1 
e 1

Using (1.20) and the inequalities

and t < 6 1 + - . - + 6 . < t f p

for t. < t < t, establishes
i—l — 1

e t (e U 
— 1) < g ( t )  — e t 

< e t
(e t

~~
) 

— 1)

and hence Lemma 2 in the case a = 1.

• End of proof of the Theorem: By (1.16) and Lemma 2

= = 2 2

I lA~
f — f

0lds < 5 e_asinax(e~
asea U — 1, 1 — e °~ }ds

0 0

where p = p(P). The right hand side above tends to zero as p -* 0, and the proof is

complete. •

Remark: If m € L1(—=,0) 0 L (—= ,O), m6(r) = 6
1m(r/6) and (1) is replaced by

G5
f = m

5 ‘ f, the first part of the above proof adapts to establish that

=

I lA ~,f(s)Ids ~• C 5 lf(s) lds

provided C > 0 ca n be chosen to satisfy

0
Im(r) I + C f Im (s) las < c a.e. —= < r < 0

This last estimate is equivalent to 1m 5 1 + rn5! * C < c. If Il m Il 1 1 ~e may set
L (-“  ,0~

- 

c = tm !! ‘(1 - Il m I l
L (—=,0) L (—= ,0)

• (Consideration of the case m(r) = 2er shows some such restriction is necessary.) By

contrast, our proofs of (5) and (6) required special properties of the exponential kernel.

•

- 

~~~~~~~~~~~~~~~~~~~~~~~ 
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Section 2. Motivation

Let X be a Banach space and A be an accretive operator in X (see, e.g., [11,

• [2) for terminology). If f e L1(O ,=;X) and x € X, we say that

• l u ’ +Au ~~f(2 .1)
- • 

• 
[ u(0) = x

• has an c—approxi~”-te solution on [0,T] if there are finite sequences

0 = t
0 

< t
1 

< < t~ , and 
~~~~~~~~~~~~~~ 

(x
o
,x

l~
...

~
x
N
) C X such that

(2.2) 
t
’
~

1 
t
’ + 

~~j+l 
~ f1+1, i = 0,1,..., N

and

N—l ~i+l
(2.3) t

N 
> T, t~~1 

— t . < C,  11x 0 — x l i  < c and 
~ 

f IIf
~+1 

— f(s)!! ds < c
i=O t .

1

In this case, the step function whose value on (t .,t. ] is x . is called an
1 1+1 1+1

c—approximate solution of (2.1)- It is shown in [3] that if (2.1) has an c—approximate

solution on [O ,T1 for each c > 0, then these solutions converge uniformly as c ~ 0

to a unique limit u € C([O,T];X) which is the solution (in a certain sense) of (2.1).

The estimates which prove this are considerably more involved in the case that f ~ 0

than in the simpler case f 5 0. The approximation theorem proved in this note allows

us to reduce the problem (2.1) with a general f C L~~ (0 ,°’;X)  to the case f 5 0 in

the following way: Define an operator A in X x L1 (0 ,’o;X) by

D ( A ) = D ( A )  x W1’1 (O,”;X)

and

A ( x , g)  = { (y  — g(0),—g ’) : y e  Ax} -

We show below that A is accretive . Given an c —approximate solution of (2.1) on

(O,T1 as above , define {g
0
,g
1 

C W’’’(0,a’;X) by g0 
= f, S . = t. — t

1 1
,

= G
5 

g, . Then the function whose value on (t. , t.~ 1
] is (x .1 ,g

1
) is an

j+l

N—l ~i+lc + 
~ 5 IIg~~1 (0)  — f(s)Ilds approximate solution of
i O t .

—6—
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• Ii” + A1J ~~~ O
(2.4)a 

~ U ( 0 )  = (x,f) -

• 
• • • 1 • 1By the (c lear ly  valid) version of Theorem 1 in which L (0 , ’ )  is replaced by L (O,”;X)

the term

N —i ~i+l

~ 5 lI g~~~ (0) — f(s) lids
i=O t.

1

tends to zero as p = max 6~ 
-
~ 0.

1
1

We now briefly sketch the proof that A is accretive. If Z is any Banach space, set

ll~ + Aq ll ~ — l l P l l z lIp + Il ~ — Il P lI ~‘ [p,q]
5 = h i s  = inf

A +0 A A>0

If Y = X * L1(O ,0 ” ;X)  is equipped with the norm

II (x ,g) = li x ll ~ 
+ I hg (s) ll ~

ds for (x,g) € x

then one computes that

f (x,g),(y,h)]~ = 1x ,y ]
x 

-f f I g ( s ) .h ( s ) ] ~~ds -

F It  fol lows that A is accretive in Y if for every (x , y ) , ( ~~,~~) € A and

g ,g  C W1’~~ (O ,= ; X )  we have

( 2 . 5 )  [ ( x - ~~ , g- ~~ ) , ( ( y - g ( O ) )  -

= [x-~~,(y-~~) - (g(0) -
~~
(0))1x 

+ 5 [g(s) -~~(s),-g ’(s) +~~‘ (s))ds ~

The first term in (2.5) is estimated by

(2.6) fx - x ,(y-y) - (g(0) -
~~~~~°‘~~~

‘
~~ 

> (x-
~~~

(Y- Y)]x 
- Ho) _~~( 0 ) l j ~~ 

- ~g ( O )  -

where the first inequality is due to the fact that is Lipschitz in q wi th

constant  1 and the second inequality is because (x ,y) , ~~~~~~~ C A and A ~s i i f i v .  -

The second term in (2.5) is given by

( 2 . 7 )  5 Fg (s) -i (s), -g ’ (s) + 
~~
‘ ( sH x

ds 5 - ~~ ll g ~~i -q(s) = u P ) )  - • ; ( f l )

.11.1

~ i~•_ • •~• _ 
-~~~~~~~~ -= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• -~~ ~~~~~~~~~~~~~ _ -~~~~~~~• ~~~~~~~~~~~~~~~~ •- --• • -
~~~~~~•~~~~ ________
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since ~~ Ilk(s) I X = [k(s) ,k’ wherever Ilk s I~ 
and k(s) are both differentiable .

Together , ( 2. 6) and ( 2 . 7 )  imply ( 2 . 5 )  and hence that A is accretive.

The system ( 2 . 4 )  was introduced in (4] for another purpose. The resu l t s  we have

just obtained reduce many questions concerning ( 2 . 1 )  to the same questions for f = 0.
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